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20. Abstract cont.

>state feedback invariants and canonical forms for linear systems characterized

by proper rational transfer matrices was obtained. A number of results have

been obtained illustrating the richness of the linkage between system theory

and algebraic-geometry. For example, it has been shown that any symmetric
transfer matrix over reals has a symmetric realization (answering an old

question in network theory). Finally, a new, general purpose compensator for

multivariable systems has been developed. This compensator insures simultan-

eous regulation, tracking , decoupling, stability, and robustness for a large
class of linear multivariable systems.
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PRACTICAL METHODS FOR THE COMPENSATION

AND CONTROL OF MULTIVARIABLE SYSTEMS

Statement of Work AFOSR.TRo 8 o - 0 0 3 6
The primary objective of this research effort is the development of practical

methods for the compensation and control of multivariable systems. Success in this

area would facilitate the design of Air Force systems as well as their control

systems. Several crucial themes representing various approaches occur throughout

the current study - namely -- (i) the question of approximation of dynamical

behavior by simplified models - (ii) the question of parameter variation and the

development of compensators which are insensitive to that variation - and (iii) the

question of systems structure and qualitative properties for parameterized models

and inter-connected systems. The amplification and application of a previously

developed model reference technique to the question of approximation via low

order models was investigated. Systems with parameters have been examined and

three main lines of investigation considered namely -- (i) the relation between

the geometric and polynomial matrix approaches to parameter insensitive compensa-

tion and parameterized models - (ii) the algebro-geometric method for treating

multi-dimensional systems i.e. systems with transfer matrices defined over a

polynomial ring in n-variables - and (iii) the use of rational mappings in

studying what might be termed the algebraic linerization of certain non-linear

systems. Interconnected systems were examined and a number of questions relating

to decentralized spectrum assignment, stabilization, and the structure graph of

an interconnected system were investigated.

Status/ 77
In the previous report, a new adaptive control scheme which allows arbitrary

positioning of all (n) poles of an otherwise unknown, linear scalar system was

described. Such a control scheme offers certain advantages in comparison to

model reference adaptive controllers. Over the past year this adaptive controller

has been further refined and tested, and its employment has been extended to the
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multivariable case [1]. The basic design of this adaptive controller depends on

the ability to identify the unknown plant, and this requirement motivated the

development of a new method for obtaining simple low order models of systems

whose dynamical behavior approximates that of more complex, higher order, stable

linear systems.

The problem of finding reduced order models for higher order systems,

sometimes referred to as the model reduction problem, is an important one for

the practicing engineer since it is difficult to apply the design procedures of

modern and classical control theory to higher order systems. Numerous solutions

have been proposed during the past two decades. A number of methods use time or

frequency response data to directly fit low order models [2]. The procedure

here falls into this category, since it determines a model which matches the

frequency response of the original high order system at a certain set of pre-

specified frequencies. Its primary advantage lies in the simplicity of imple-

mentation. In particular, no intermediary high order model need be calculated,

only one test imput need be used, and the calculation of model parameters only

requires the solution of a simple set of linear equations. The model parameters

can also be obtained as the output of an analog adaptive network, since the

algorithm makes use of a generalized equation error identification scheme.

Finally, this algorithm readily generalizes to the multiple input-multiple

output (multivariable) case where classical frequency and time domain procedures

become cumbersome to apply. It should be noted that the procedure has recently

been employed to derive a relatively low (fifth) order linear model of the

F1O0 jet engine which represents its higher (sixteenth) order model behavior

AIR .~, . ~~. : (AFSC)
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Additional research under the grant has focused on understanding and apply-

ing the methods of algebraic geometry in the context of three key questions, namely:

Question 1--Can th' orbits in the space of linear systems under equivalence via

the ction of an algebraic group be described and classified?

Question 2--What spectral structures can be achieved through the use of compensa-

tion?

Question 3--What are the essential algebraic elements required in extending results

to domains other than the real and complex numbers?

A summary of various results and problems is given in [3].

More specifically, results pertaining to Question 1 were obtained in [4] for

the action of state feedback and have recently been extended to systems over

Noetherian integral domains of characteristic zero using a lemma of Falb to be

described in the sequel. If T(s) = R(s)P- (s) is a proper transfer matrix, then

(R(s),P(s)) may be viewed as "homogeneous coordinates" of a point under right

multipication via the unimodular group Um It was shown that the orbits under

state feedback are represented by the action of stabilizer subgroups U a of Um

on fibers where a = {al, , amI were the Kronecker indices. The subgroup Ua

had the structure of a semi-direct product of a normal subgroup UN (the unipotent

radical) and a reductive subgroup UG which acts on UN via inner automorphisms.

This structure of Ua was a critical algebraic element in the development.

Consider now Question 2. Let A, B, C be n x n , n x m , p x n matrices

with entries in a field k and let *A,B ' OA,B,C be the maps of Mm x n (k)

Mm x p(k) into kn given by

(F) (tr(A +BF) tr(A + BF)q  tr(A + BF)n)
A,B(F t( F . q ' "' n(1

(K) BKC) , ... tr(A + BKC) q  tr(A + BKC)n) (2)

OA,B,C(K) (tr(A q ' n

respectively. These might be called the state feedback and output feedback trace
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assignment maps. Both maps are morphisms and will be almost surjective (onto)

if and only if they are dominant morphisms. This leads to the following proposi-

tions:

Propostion ~AB is a dominant morphism if and only if rank

Proposition 2 OABC is a dominant mopimif and only if rank4o ABC n.

Proposition 3 AB B'

B1(A + BF)",-l

so that rank 0' AB =rankj:(A,B) where C'(A,B) is the controllability

matrix of (A,B)

Proposition 4 1 A,B,C BIC#

B'(A + BKC)In-lC,_

More interesting are the implications of this approach when parameters are involved.

Consider, then, the following example: let X = k 2 (2+1) Y with coordinates

x = (a 11, a 12 ' a 21, a 22, b1  b 2) and Y = xI(a 21b I + a 2 2 b 2b 1 - (a 11b I + a 12 b 2b 2 = 01

Let WCX be the variety given by a11~ 1 =0 , a 2 1 '=0, a 2 2 -1I=0 , b 2- 10

so that W is 2-dimensional. Let a 1 2 =p be a parameter. Then q)AB (F) for

(A,B) in W is given by b 2f 2  f 2

*A F)=(2+ bf11+ f 2 l+ pfI+ b If 1f 2 +(b 1 f1 +f 2)+ -112 2 (3)

and *1 A,B for (A,B) in W is given by

and- + bI+ b(bIf 1 I f 2) 1 + b f + f 2__()

deti' AB = -p (5)

In view of (5), it is not possible to place all poles via state feedback independently



of P. However, since rank 'A,B/3p = 1 independent of (fl,f 2) it is possible

to place one (of the two) poles via state feedback independently of p . Now let

b, = q be a parameter. Since the rank of

3 A,_ B =[
3q L + 2qf I + f2 fl

is independent of f2 P it is possible to place one (of the two) poles via state

feedback independently of q

The observations of the example can be extended quite a bit. In fact, the

following theorem has been established:

Theorem 1 Let A(p) , B(p) depend algebraically on the parameter p and

suppose that A(p) , B(p) controllable for (almost) all p . If

rank 3*'A,B (6)ap
is independent of a < n entries of F , then it is possible to assign

a poles independently of p.

This generalized the work of Eldem ([5]). Current work is devoted to analyzing

a similar problem for output feedback.

Consider now Question 3. A detailed and extensive theory of linear systems

involving transfer matrices whose entries are rational functions in one variable

has been developed. Increasing interest in image processing and in the inter-

connection of digital and continuous systems and in systems with fixed delays has

led to various attempts to extend the theory to systems involving transfer matrices

whose entries are rational functions in n-variables or lie in the quotient field

of an integral domain. The ultimate goal is to obtain a theory for transfer

matrices whose entries lie in the quotient field of a unique factorization domain

(e.g. k [x1 , ... , xn] , k a field, x1 ,.... xn  indeterminates). Some

progress has been made and in particular, the following lemma has been established

by Falb:
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Lemma 1 Let R be a Noetherian integral domain of characteristic zero and let

Z be the ring of integers. Then the realization, coprime factorization

and trace assignment problems are solvable over R[x 1, .... n ] if and only

if they are solvable over R [x,x 2 ... Xn]

This lemma exposes the essential algebraic nature of certain basic system theory

problems and indicates the importance of studying these problems over the integers.

The approach that will be used involves treatment of the entire set of linear

systems. More precisely, let R be a Noetherian integral domain of characteristic

zero and let S = R[Aij, Bk, Crs] where i =1,.., n , j =1 ... , n , k = 1,

... , n . Z = 1, ... , m, r = 1, ... p ... , n . For ease

of exposition, set A = (A..) , B =(Bkt) , C (C rs) and C(A,B) = [B AB ...

A - 1 B], O'(A,C) = [C' A'C' . A' n - 1 C'] Let a,B be selections of nxn

submatrices of r(A,B) and Vf(A,C), respectively, and set f = detjC(A,B)O,

g= det i(A,C) . Then X =UXfa( X is open in Spec (S). If Q6GL (n,R),

then Q. p (A,B,C) = p (QAQ-
, QB, CQ ) for p (,.) in S defines an action and

Q • p is prime if p is prime. Moreover, Q. X = X . X is called the set of

minimal linear systems over R. The transfer matrix can be defined for elements

of X in the following way: Let K be the quotient field of R and let x be

an indeterminate over S. Then

T(x) =C adj(xI - A)B
de( I -A) (7)

has entries in L(x) where L is the quotient field of S and defines a rational

map of An(n + m + p) (K) x AI(K) Mpxm (K). Since M pxm(K) can be naturally

imbedded in a Grassmannian i.e. a projective variety 7 and since the fundamental

set has codimension 2 in A (K), T(x), for fixed (A,B,C) in An (n + m + p)(K)

extends to a rational map of P (K) + n. This map is the transfer matrix and

has (generic) homogeneous coordinates (N(x), D(x)). The map will be regular if

and only if N(x) and D(x) are coprime. This provides a general, purely algebraic

definition for coprime factorization. Additional results along these lines have

L . , .i, *s~~rI , I
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b-en established ([6]).

In view of the increasing use of the ideas and methods of algebraic geometry

in system theory, Falb has begun work on a book on the subject. The book has

several aims, namely: (i) to provide, in a motivated context, an account of the

algebraic geometry needed in system theory; and (ii) to develop the system theory

results which are of a purely algebraic nature. The main focus will be on the

three key questions raised earlier. The first chapter has been written and is

topically outlined below.

Chapter I

A. Algebraic Methods

B. Notion of System

1. Representations

2. Equivalence of Representations

3. Space of Minimal Linear Systems

C. Qualitative Properties

1. Compensation

2. Pole-Assignment and Stability

3. Parameter Variation

Frequency domain methods have always dominated control system design in

the scalar (single input/output) case, when compared to the more "modern"

state-space or differential operator methods, due to the relative simplicity

of the resulting controllers and their ability to function acceptably over a

rather wide range of plant parameter variations; i.e. their robustness. It is

not surprising, therefore, that numerous studies have been made to "extend"

various frequency domain techniques to the multivariable case in order to

simply and reliably achieve a diversity of desired design goals. In most cases,

however, direct extensions of scalar frequency domain procedures, such as the

Nyquist stability criteria or the root locus, are not possible and often rather
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complex modifications have had to be made to existing theories in order to achieve

appropriate design objectives. Further complicating the picture is the fact that

noninteration (or decoupling) is often an addditional design objective in the

multivariable case, and a completely decoupled, stable system cannot always be

achieved by the relatively simple feed-forward controllers obtained by multivariable,

frequency domain methods. Nevertheless, many of the designs which have been

developed using multivariable frequency domain methods do perform quite well in

practice and have therefore found rather widespread acceptance in a variety of

applications.

On the other hand, the so called "modern" methods, which have generally

relied on exact knowledge of the plant, are continually being improved upon

and extended to take into consideration parameter uncertainty and/or variations;

i.e. robustness is becoming increasingly important in designs based on state-

space or differential oporator methods. Although these "modern" methods

generally imply more complex controller configurations, than those associated

with frequency domain methods, they are less heuristic to implement and can

generally achieve more than is possible with the simpler controllers designed by

frequency domain methods. Moreover, with the ever increasing utilization of

computers in the control loop, it may be argued that controller simplicity is

no longer as important as it once was, and one might therefore expect to see

more complex controllers being used in future applications.

In light of these observations, recent research has outlined a new procedure

for designing controllers which simultaneously achieve a variety of desired design

goals in deterministic, unity feedback, linear multivariable system [7]. More

specifically, a new algorithm has been obtained for the systematic design of a

"three part" multivariable controller which simultaneously insures

ta) a non interactive or decoupled closed loop design,
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(b) complete and arbitrary closed loop pole placement, which implies

desired (single loop) transient performance as well as closed loop

stability,

(c) zero steady-state errors between the plant outputs and any nonde-

creasing deterministic inputs,

(d) complete steady-state output rejection of nondecreasing determin-

istic disturbances, and

(e) robustness with respect to stability, disturbance rejection, and

zero error tracking for rather substantial plant parameter variations.

The development employs the more "modern" (Laplace transformed) differential

operator approach for controller synthesis, which involves transfer matrix

factorizations and the manipulation of polynomial matrices in the Laplace

operator s.
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